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Programming the MIPS64 20Kc Core

1. Introduction
This document describes where the MIPS 20Kc CPU core behaves - from the point of view of the most fussy,
privileged software - in ways not specified by the MIPS64™ Architecture document [MIPS64]1. Most of this
variance is in the ‘‘coprocessor zero’’ or ‘‘privileged architecture’’ features, so most of the references in this
document are to [MIPS64v3].

The document is arranged functionally. If you lose track of some CP0 registers, there’s a list in Appendix A with a
cross-reference.

Conventions
CP0 register numbers are denoted by n.s, where ‘‘n’’ is the register number (between 0-31) and ‘‘s’’ is the
‘‘select’’ field (0-7). If the select field is omitted, it’s zero. A select field of ‘‘x’’ denotes all eight potential select
numbers.

2. A brief guide to the 20Kc hardware
20Kc is a high-end design and its implementation is more complex than MIPS Technologies’ other cores. It
features:

• 2-way superscalar execution : 20Kc can issue a pair of consecutive instructions in parallel. This won’t happen if
one of the instructions depends on the result of the other, or if the instructions are not part of the same
4-instruction-aligned ‘‘fetch group’’, or for a host of other reasons. But you should be aware that the 20Kc can
start and finish two instructions per clock.

• Distributed pipeline control : inside the 20Kc are a number of chunks of logic (‘‘functional units’’) which are
involved in executing instructions. Rather than have some single overriding ‘‘conductor’’ who tells everyone
what to do on every beat, each functional unit runs as and when it has inputs ready and somewhere to put the
result.

Why do you need to know that? So long as each unit runs as expected everything works smoothly: but it’s
impractically difficult to predict the exact sequence of activity generated by a particular instruction sequence in a
particular system. If you need to know exactly what happens with some code sequence, you should rely on
measurement of a real or accurately simulated system.

• Branch prediction and limited speculative execution : the 20Kc’s relatively long pipeline means that several
clocks elapse between fetching a branch instruction and the point where the CPU identifies the target of the
branch (for a conditional branch the CPU must compute its branch condition, and for a jump-register must
compute its target address.)

The MIPS architecture requires that a single instruction following the branch (the ‘‘branch delay slot’’
instruction) will be executed regardless2, but 20Kc could not compute a target address in time to keep going
immediately after the branch target, as is possible with short-pipeline MIPS CPUs - and in any case it could be
issuing two instructions per clock.

Branches are common, and a 2-clock penalty on each branch would sap performance; so the 20Kc has circuits
which guess the branch target as the branch instruction is decoded. Execution continues at the predicted address
without missing a beat, but until the branch condition has been properly resolved these ‘‘speculative’’
instructions are not allowed to commit any state (they must not write any registers, or perform any write to
memory).

When the guess was wrong, the CPU must discard all speculative work and restart at the now-confirmed but
different target, which is relatively costly (5 cycles in 20Kc). But it turns out that the guess can be right a

1 References (in square brackets) are listed in §12.
2 There’s a special case for ‘‘branch-likely’’ instructions; see the architecture manual, and note

that such instructions are deprecated in code optimised for the 20Kc.
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remarkably large proportion of the time; branch prediction is a big win for longer-pipeline CPUs.

20Kc has two branch predictors:

- For conditional branches there’s a branch history table (256 entries for 20Kc). It’s indexed by the low-order
bits of the address of the branch instruction, and remembers the prior behaviour of any branch instructions
with those particular low address bits: each entry is a 2-bit saturating counter incremented for branch-taken
and decremented for not-taken.

This really is as crude as it looks. No attempt is made to clear out the table when an entry is re-used with a
new branch which happens to share the low address bits of a previous branch, for example. Nevertheless, it
really does work.

In 20Kc branch-likely instructions (beql etc) are always predicted as taken. This is done more for
implementation convenience than efficicieny: these instructions are already deprecated by [MIPS64], so are
provided only for compatibility. There’s a penalty of fiv e wasted pipeline clocks for any ‘‘likely’’ branch
which is not taken.

- A return address stack is pushed by each jal instruction, and consulted on each jr ra, reasonably
assumed to be a subroutine return3. A misprediction is inevitable when software returns through fiv e or more
levels of subroutine, but that’s relatively rare.

Speculative instructions which are subsequently abandoned are not completely system- and software-invisible.
They cause real fetches from the I-cache, though any cache miss causes speculation to be suspended. The
speculative instruction stream interacts with the branch prediction mechanism, reads CP0 registers, and slows
other activities by competing for resources.

Speculative instructions may not commit state: they will stall rather than write a value into the register file, store
data into cache/memory, or perform any access on the external bus. In particular speculation is never permitted
to cause an exception: if a speculative fetch or the partial execution of a speculative instruction encounters any
condition which would cause an exception, everything waits until the original branch is resolved; you never see a
‘‘speculative exception’’.

Since 20Kc uses distributed control an instruction which is stalled does not stop everything: if it takes a while to
resolve the branch condition a maximum of 18 speculative instructions4 can be fetched to fill the queues in the
various functional units.

• ‘‘Replays’’ and unexpected delays : The 20Kc’s distributed control could cause a lot of delays, as control signals
propagate between functional unit. To avoid this many of the control signals are defined to be available a clock
too late for convenience: units continue optimistically based on reasonable expectations about their inputs and
outputs.

Sometimes something unusual happens, the reasonable expectations aren’t met; then a functional unit overruns
some output path, or runs out of inputs and starts computing junk. At this point the CPU consults a kind of
‘‘journal’’ of recent history, and can recover from overruns/underruns by winding back a few clocks and
replaying the last few instructions.

A replay causes an 8-cycle delay.

3 Code generating conventions for all the popular MIPS ABIs insist that a return from
subroutine is always done with a jr ra. even when (because the return address has been stored
on the stack at some point) there is no particular reason to use that register.

4 The precise number is an implementation detail and you should not rely on it; but this gives
you some idea of how far speculation might reach.
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3. Initialisation and identity
What happens when the CPU is first powered up? These functions are perhaps more often associated with a ROM
monitor than an OS.

3.1. Config registers
The registers Config and Config1 are mostly read-only 32-bit CP0 registers which contain information about the
CPU’s capabilities.

The few writable fields in Config are there for historic compatibility, and are typically written once soon after
bootstrap and never changed again.

The MIPS64 standard permits up to four configuration registers: 20Kc has only these two. Config1 is completely
standard, but Config has some 20Kc-specific fields in the implementation-defined bits 30-165. It also uses bit 3 to
indicate a virtual I-cache - standard but worth noting.

Fields not shown are as required by the MIPS64 specification.

Fields
Name Bits R/W?

Description

EC 30-28 RO External clock to pipeline clock multiplier:
n → multiplier is (n+1).
Read-only, set by hardware.

DD 27 Obsolete hardware setting, write zero

LP 26 RO External bus width:
0 → 64-bit
1 → 32-bit
Read-only, set by hardware.

SP 25 RW Parity options on CPU interface:
0 → check data only
1 → check commands too.

TI 24 RW Controls connection of CPU counter/timer interrupt.
0 → Cause.IP7 from timer interrupt
1 → Cause.IP7 from CPU input signal, timer disabled.

In both cases Cause.IP7 is really the logical OR of the condition
above and the performance counter interrupt...

TD 23

TF 22

Writeable bits whose 1/0 value is reflected on a pin in the 20Kc on-
chip interface, and are conventionally used to communicate test
results.

Non-diagnostic users should write to zero.

21-16 unused

15-4 as MIPS64 specification

VI 3 RO Reads 1 to tell you the I-cache is virtual; this field is standard,
though only added in Revision 1.0 of [MIPS64].
Read-only.

Table 3.1: Non-standard fields in the Config register

5 Many of these are writable, which is not quite in the spirit of the way [MIPS64] defines the
Config registers.
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Post-reset value of Config.K0
This is not mandated by [MIPS64v3]. On 20Kc it is left set to ‘‘2’’ (uncached). Early system initialisation software
will typically re-write it to ‘‘3’’ in order that kseg0 will be cached, as expected.

CPU information fields in Config1
Are set according to [MIPS64v3] to indicate:

• The TLB has 48 entries;

• Both the I-cache and D-cache are 4-way set associative with 32-byte lines and 256 sets/way (32Kbytes each).

• There is a performance counter.

• There is a watch register.

• MIPS16 is not available.

• There is an on-chip EJTAG debug unit.

• There is a floating point accelerator (FPU).

3.2. PRId register value
The PRId register is read-only, of course.

31 24 23 16 15 8 7 0

Company Options Company ID Processor ID Revision

PRId 1 0x82 0x20

Figure 3.1 PRId (processor ID) value

• Company Options : comes from the SoC design (input pins to the core).

• Company ID : is ‘‘1’’ and represents MIPS Technologies Inc.

• Processor ID : of 0x82 is supposed to be changed if and only if there is some software-visible change in the
specification. Note that a change which is fully accounted for in other registers - such as a differently-sized
cache described in the Config registers - need not be recorded here.

• Revision : 0x20 in the first cores, but may increment with silicon revisions.
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4. The memory map
The 20Kc implements a full 64-bit address map divided into all the standard segments shown in [MIPS64v3].

40 bits of virtual address space are available to user processes: so the user-mode virtual address region is 1Terabyte.

You should not need to hardcode the ‘‘40 bits’’ value. As [MIPS64v3] says:

‘‘Software may determine SEGBITS (the number of address bits required to span the user virtual address spaces)
by writing all ones to the EntryHi register and reading the value back. Bits read as "1" from the EntryHi.VPN2
field allow software to determine the boundary between the EntryHi.VPN2 and EntryHi.Fill fields to
calculate the value of SEGBITS.’’

20Kc generates a 36-bit physical address (a 64Gbyte addressible region). Again, see [MIPS64v3] for how to work
this out from the TLB registers in a somewhat future-proof way.

5. Reads, writes and synchronisation
20Kc is a high-performance design and read operations are split into an address phase and a later data phase, with
other bus operations happening in between.

5.1. Sequencing of loads and stores
• Non-blocking loads : the CPU supports four pending loads - either uncached loads or resulting from cache

misses. Only a fifth load will cause it to stall.

If any instruction references a register which is the subject of a pending load, everything stops until the data
arrives.

• Hit-under miss : the D-cache continues to supply data on a hit, even though there is one or more cache refills
pending.

• Write-under-miss : the CPU pipeline continues and can generate stores even though a read is pending. 20Kc’s
interface is non-blocking too (reads consist of separate address and data phases, and writes are permitted
between them), so this behaviour can often be visible to the system.

• Miss under miss : 20Kc can continue to run until it accumulates up to four pending read operations.

• Ordering : the address phase of uncached reads, cache refills and uncached stores are presented in order on the
system bus. Cache writebacks (caused by data being pushed from the D-cache to make space for a line required
to service a cache miss) are typically deferred until pending read traffic has been dealt with.

Reads are never allowed to overtake writebacks to the same memory address.

Uncached accelerated writes
20Kc permits memory regions to be marked as ‘‘uncached accelerated’’. This type of region is useful to hardware
which is ‘‘write only’’ - perhaps video frame buffers, or some other hardware stream.

Such regions are uncached and not partial-word writable: but sequential word and doubleword stores in such regions
(which span a whole cache-line sized and aligned memory block) are gathered into cacheline chunks each of which
is written with a single burst cycle on the CPU interface. This burst is marked by per-word ‘‘valid’’ bits, so that
unwritten memory words are not corrupted.

The burst write is normally performed when software writes to the last location in the memory block; but it can also
be triggered by a sync instruction, or by a byte write6 in the uncached accelerated space (which is otherwise a no-
op: remember, partial word writes don’t work in an uncached accelerated region).

6 Why both? It’s because the sync instruction is privileged, and sometimes the software
pushing out the uncached data might be a user-level task.
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5.2. Bus error/Cache Error
20Kc checks its incoming data bus (and the command buses too, if so configured) for parity. A parity error always
results in a ‘‘cache error’’ exception, and it’s imprecise: that is, ErrorEPC does not generally point to the instruction
which caused the error. Parity errors are barely recoverable, and should usually be processed as a controlled crash
(which is often preferable to the uncontrolled behaviour which would follow if the CPU was fed with bad data).

CacheErr register
This is a read-only register and is valid only after a cache error exception. Unused fields read zero.

Name Bits Description

ER 31-30 Where was the error detected?
00 → Instruction Cache
01 → Prefetch Buffer†
10 → Data Cache
11 → Fill Store Buffer†

ED 29 set if the data field was wrong

ET 28 set if a cache tag field was wrong

ES 27 set if the error happened during an external request such as a cache
invalidation.

EE 26 set by a parity error on the CPU interface

EB 25 set on an ‘‘instruction error’’†

24 Reserved

EW 23 set when there was a tag error on an external request

22-15

WA 14-13 The cache way at which the error was detected.

IN 12-5 The cache index at which the error was detected.

4-0

Table 5.1: Fields in the CacheErr register

ErrCtl registers
In fact there are two of these, one for each cache: DErrCtl and IErrCtl. They are 32-bit registers of which the
low 8 bits are used to access the data parity bits of the caches. When being read, the bits are valid following an
‘‘index load tag’’ instruction.

DErrCtl can also be written (setting the parity bits on a ‘‘store tag’’ instruction), but IErrCtl is read only. To
store the bits you have to set SR.CE and then perform any store operation which hits in the cache. It seems unlikely
you’d do this for any purpose other than diagnostics, and you’d need to refer to the full manual.

Bus error exception
20Kc’s read protocol permits something elsewhere in the system to signal that data is bad (it’s a ‘‘bad’’ bit in the bus
command encoding); it results in a a bus error exception. Typically this reports a failure of some subsystem to
respond to the supplied address. The bus error is also imprecise, since the (non-blocking) load which caused it may
have happened a long time ago.

If software knows that a particular read might encounter a bus error - typically it’s some kind of probe - it should be
careful to stall and wait for the load value immediately, by reading the value into a register, and make sure it can
handle a bus error at that point.

† The author is hazy as to what these things are; they are internal components of the CPU
design which are not visible to software. It probably doesn’t really matter. Cache errors are
fatal, and these fields are there to help you debug your logic. It’s time to pull out the full CPU
manual and involve the hardware engineers...
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6. Basic privileged operation, exceptions and interrupts

6.1. The counter/timer
20Kc’s timer register Count increments at the pipeline clock rate (on many MIPS CPUs it increments at one half of
the pipeline clock rate).

If you want counter/timer interrupts you must enable them to be delivered to Cause.IP7; see Table 3.1 above.

6.2. Status register
• Implementation-defined bits : SR[17](CE) is a writable bit used for cache diagnostics, see §5.2 above.

SR[16](DE) is a writable bit set to disable cache parity error processing.

• Reduced power mode : set SR.RP to reduce the system clock rate by setting the system clock/pipeline clock
multiplier to 1. It takes effect only when the CPU is not in exception mode (that is, when SR.EXL and SR.ERL

are both zero).

Note that in reduced power mode the counter register Count slows down, too. You might not have expected
that.
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7. Caches
Using [MIPS64v3], you can find out the size and shape of the I-cache and D-cache by reading Config1. 20Kc’s
caches are unusual; it has a virtually-tagged I-cache and a physically-indexed D-cache. As a result of that
asymmetry it uses separate cache-maintenance registers for the I- and D-cache: they’re ITagHi/ITagLo,
DTagHi/DTagLo.

There are cache data registers too.

7.1. I-cache
20Kc’s I-cache uses virtual addresses for both its index and tags; a feature which was not used in MIPS architecture
CPUs until recently, and may require new support in some OS.

The advantage of a virtual cache is speed: you don’t hav e to wait for the memory management hardware (the TLB)
to translate the address before looking it up in the cache7. That means more MHz or a shorter pipeline, and both are
very desirable. Naive virtual caches have two serious disadvantages, and it’s easier to appreciate the 20Kc design if
you appreciate what those might be:

• The same virtual address may be in use by many different Linux processes. Long ago when caches were small
and CPUs were slow, you could just discard the cache contents when you did a process switch which changed
the address map; but you can’t reasonably do that with a 32Kbyte cache.

So modern implementations like 20Kc extend the cache tag with a address space ID (associated with the
particular address space). 20Kc uses the 8-bit ASID field already maintained in the EntryHi register for the
same sort of purpose in the TLB. Note that when the OS needs to recycle an ASID - the 8-bit field gives you
only 256 unique values - it is still necessary to discard the whole I-cache contents.

• Several different virtual addresses may map to the same physical memory - common (for various reasons) in
Linux and Windows CE. So a virtual cache may store the same memory location more than once.

For an I-cache that’s not much of a problem; the CPU can’t write to the I-cache, and the OS already has to do
special things when it writes instructions. For a D-cache this would be a disaster, which is why nobody builds
virtual D-caches any more.

There’s a complication: the MIPS architecture defines a trick which makes some virtual address regions ‘‘global’’ -
the hardware maps them to the same physical addresses regardless of the ASID. This is used widely used in Unix
systems where mapped kernel regions are accessible to any process which is running a kernel routine. MIPS CPUs
implement this with the ‘‘G’’ bit in a TLB entry; such an entry will match a virtual address regardless of the current
ASID value. 20Kc’s virtual I-cache must also have a ‘‘G’’ bit, and must do the same; a cache line with the ‘‘G’’ bit
set allows a hit from a matching virtual address, regardless of the ASID.

I-cache tags register
This register’s layout is always machine-dependent; 20Kc’s is particularly unusual because of the needs of the
virtual I-cache. Note that information about the tag register fields should never be used by an OS - which at most
can write zero values into the tag registers as part of cache initialisation - and is required only when debugging or for
CPU/cache diagnostics.

The tag field is wide, so it helps to see the registers as a pair in Figure 7.1:

ITagHi ITagLo

31 18 17 16 15 8 7 3 2 0 31 8 7 6 5 4 3  1  0

0 BE G  ASID SEG virtual tag V 0  L F 0 P

Figure 7.1 I-cache tags registers ITa gHi/ITagLo

Where the fields are:

7 Many other MIPS architecture CPUs - including the 4K and 5K core families - use a virtual
cache index, but a physical address for the tag. But you still have to translate the address in time
to check the tag, and that’s more of a problem in the faster 20Kc.
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• BE : why do we need an endianness bit here? Recall that 20Kc implements the SR.RE bit, which allows the
CPU to switch endianness in user mode, so (with enough software support) you could run a little-endian
application on a big-endian OS, and vice-versa8. Cached instructions can therefore survive across the
endianness-change boundary.

A MIPS instruction stream is a sequence of 32-bit objects, and has no inherent endianness. But 20Kc handles
instructions in pairs on its 64-bit buses; so it needs to know its endianness to decide which of the two instructions
presented on the 64-bit bus is first in sequence. Having the ‘‘BE’’ bit stored with the cache line ensures there is
no timing race where instructions for a little-endian task might be unpacked big-endian.

• G, ASID : the ASID field and its ‘‘global’’ bit matching the data in this line, as discussed above. For translated
addresses G will have been taken from the TLB entry; for untranslated addresses it’s always set (untranslated
address regions are available to all address spaces, thus ‘‘shared’’).

• SEG : the highest bits 63-62 of a MIPS 64-bit virtual addresses determine the ‘‘segment’’ of the address map in
which this address lives, and thus how it’s treated. In the XKPHYS segment (only) bits 61-59 are used to
subdivide that segment into multiple sections mapping all physical memory, but with different cacheability
attributes (see Table 7.1 on page 15 for encodings).

Since in 20Kc none of the segments is more than 240 bits in size, so addresses 58-40 may never be meaningfully
other than zero; the cache doesn’t hav e to track them.

• virtual tag : virtual address bits 39-13. Virtual address bits 12 and downward form the cache index, so don’t
need to be kept in the tag.

• V : valid bit. The big manual calls this PState for consistency with the D-cache, where there is more than one
bit of line state.

• L : locked bit. See §7.3.

• F, P : cache housekeeping bits - one used to select cache lines for replacement, the other parity. Neither have any
software significance.

Programming 20Kc’s virtual I-cache
With carefully designed OS support, a virtual I-cache need pose no great problems. But if you’re only familiar with
physically-tagged caches and how they work in systems, you need to change your own mental models quite a bit to
adapt to a virtual cache.

So a virtual cache is a cached copy of previously-referenced instruction lines from some virtual address space.

An OS may maintain vast numbers of virtual address spaces, but the CPU’s ASID is only 8 bits; no more than 256
address spaces can be represented by either TLB or I-cache entries at any one time. A process keeps its ASID either
until the process itself is being terminated, or until the OS (having run out of valid new ASIDs) selects the process as
the best target to be de-ASID-ised. A process without an ASID can have no entries in the TLB, no code in the I-
cache, and is therefore far from runnable: the OS needs to keep track of this so it can restore the process if and when
required. So:

• When the OS takes back an ASID from a process : it must discard all translations for that ASID from the TLB9,
and all lines using that ASID from the I-cache. The hardware offers little help in selecting entries for just one
ASID, so you can expect the OS to discard all TLB entries and the whole I-cache contents.

When a process springs into existence with an ASID, it will have no matching TLB or I-cache entries. The TLB
entries will appear as a result of TLB miss processing in the normal way, and won’t be discussed further here.

I-cache entries will be generated as it runs. Since these cache the virtual space, these will cease to be valid if and
only if the OS adjusts the executable contents of the address space, and that happens (for Unix/Linux) in three
contexts:

8 Note that (to the author’s knowledge) this has not been used by any OS.
9 If you’re converting an OS to support a virtual I-cache for the first time, it is a useful

guideline that where you need to remove entries from the TLB, you will usually also need to
remove entries from the I-cache.
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• On an exec() : the exec() function maps a new program image to a Unix process. This creates a complete new
memory map, and therefore any previous I-cache entries become invalid. At this point all I-cache entries for this
ASID must be discarded.

• On an mmap() : mmap() maps a file to some portion of a process memory space. By far it’s most common use
is as the mechanism underlying dynamically-loaded libraries. If this is the first time any valid contents have
been associated with this part of the address space, there should be nothing to invalidate; otherwise you need to
invalidate entries for this ASID and matching the range of addresses affected - and that range is likely to be
sufficiently large that it is easier to invalidate the entire I-cache.

• Whenever you write instructions : if the CPU writes machine instructions for execution to anywhere. Linux/Unix
don’t do this for normal program loading: but the auto-generation of small pieces of code on a process’ stack
(‘‘trampolines’’) is a standard part of implementing signals. And interpreters can do it.

In this case you need to first force a writeback of any D-cache copies of the locations affected, and then an I-
cache invalidate to remove any stale copy of the data. This should certainly be done using an operation which
only invalidates copies of the affected locations.

CPUs with physically tagged I-caches require the last of these, but not the first two.

You should note that a virtual I-cache does not usually need any attention when reading instructions from disk for a
page-in from an application binary or shared library. These pages are not application-writable; you’re either reading
that data for the first time in the process’ life (when there can be no I-cache copy), or you’re just re-reading the same
data as might have been visible at this virtual address earlier (in which case any long-lived I-cache entry is in fact
valid). The OS will have hooks to provide necessary invalidation for physically-tagged caches in the disk drivers,
and it may be difficult to establish that the context is a page-in...

One last unexpected feature: there is no connection between the algorithms by which the I-cache and TLB discard
old entries to make room for new ones. So it’s quite possible for instructions to be validly cached in the I-cache,
ev en though there’s currently no translation entry for the address in the TLB. You’d hav e to try hard to notice that,
of course.

Executing from ‘‘uncached’’ region
20Kc implements uncached execution as an I-cache miss; kind of obvious. Because it doesn’t consult the TLB when
looking up the (virtual) I-cache, the difference between cacheable and uncacheable regions is noticed after the cache
miss, when no attempt is made to fill a new cache line.

This sounds the same... but it means that:

1. If you change the cacheability of a piece of code which is already in the I-cache, the CPU will still use it from
the cache - unless you go in and software-invalidate it.

Bear in mind that one way you can change cacheability is to use the Config.K0 to make ‘‘kseg0’’ uncached -
sometimes done for debug or in bootstrap code - and in this case too instructions which are already cached will
continue to act cached until invalidated.

2. At reset time the cache is in an ‘‘undefined’’ state (which may contain fossil state from before the last reset).
Any code you execute from anywhere except the permanently uncached ‘‘kseg1’’ region could potentially hit in
the cache, returning garbage. So it’s important to invalidate the I-cache early in the bootstrap process, even if
you plan to run code uncached.
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7.2. D-cache
20Kc’s D-cache is both physically-indexed and physically tagged. This means that it’s free of the ‘‘cache alias’’
problem which afflicts many MIPS CPUs.

D-cache tags register
As for the I-cache tags, the information here should never be used by an OS - which at most needs to write zero
values into the tag registers as part of cache initialisation - and is required only when debugging or for CPU/cache
diagnostics.

The (nominal) DTagHi register doesn’t exist: there is enough room for all required tag, line state and housekeeping
bits in the 32-bit DTagLo, shown in Figure 7.2.

31 30 8 7  6 5 4 3 1  0

0 PTag PState L F 0 P

Figure 7.2 D-cache tags register DTagLo

The fields are fairly well-understood:

• PTag : physical tag - to be matched against bits 35-13 of the translated physical address.

• PState : a cache line can be in one of three states:

Code State

0 Inv alid
1 Inv alid
2 Clean Exclusive
3 Dirty

The ‘‘valid but not written’’ state is called ‘‘clean exclusive’’ to emphasise that 20Kc’s simple coherency model
does not allow two caches being kept coherent to share access to the same line of memory: to be made valid in
one cache, any copy in any other cache must first be invalidated.

• L : set one to lock the line: see §7.3.

• F, P : housekeeping bits for the hardware: one used to keep track which line in a way was least recently filled, the
other is a parity bit.

D-cache DMA coherency
20Kc provides a mechanism which DMA transfer can use to maintain coherency. If that’s enabled in your system,
you will never hav e to invalidate or writeback the data cache because of DMA activity10

DMA coherency is a system option, and many 20Kc systems may not provide the interface: in that case you have all
the usual problems afflicting software-managed writeback caches, which are commonplace on MIPS64 CPUs11.

10 Note that you can’t run an OS with no explicit cache maintenance code on 20Kc. At a
minimum, you still have to do a D-cache writeback when writing instructions - there’s no
automatic updating of the I-cache from the D-cache - and the I-cache must be handled explicitly,
too.

11 That is, you still have to inv alidate a buffer region when an I/O device is supplying DMA
data, and write-back the buffer region before an I/O device takes DMA data. And without
hardware coherency, you have to be careful about segregating buffer data into separate cache
lines...
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Cacheability options
Whether data can be cached, and how writes are managed, is influenced by a cache control code either obtained
from the TLB or (for untranslated ‘‘kseg0’’ accesses) found in the Config.K0 register field. The available values
for 20Kc are shown in Table 7.1.

Code Behaviour

0 Cacheable, Noncoherent, Write Through
2 Uncached
3 Cacheable, Noncoherent (Writeback)
4 Cacheable, Coherent (Writeback)
7 Uncached Accelerated

Table 7.1: Page/Region read/write/cacheability codes

Codes 2 and 3 are standard and required by [MIPS64v3]. The attributes are:

• Cacheable : this data can be read through the cache.

• coherent/noncoherent : influences code which marks a block read. An OS can mark pages which it knows can’t
be affected by DMA at run-time as ‘‘non-coherent’’ and a system controller12 would be freed from the burden of
‘‘snooping’’ such cycles.

• writeback : the normal way to handle CPU writes in the D-cache. In this kind of region stores happen only to the
cache, not (yet) to memory. Data is only written to memory when the cache line is recycled to service a later
miss (or explicitly written back with a cache instruction).

• write through : an optional setting, which causes all writes to go directly to memory. Write data is captured in
the cache if and only if the location is already present in the cache.

At high speeds this is amazingly inefficient, but it can be helpful when driving some memory-mapped device
such as a video frame buffer.

• accelerated : a peculiar way of doing writes appropriate to some high-speed streaming output devices: see §5.1
above.

7.3. Cache locking
In both the I- and the D-cache software can set a line into locked state using the cache FetchAndLock
instruction; it’s remembered by the the ‘‘locked’’ bit visible through the cache tag registers ITagLo.L and
DTagLo.L.

See [MIPS64V2] for programming information.

A locked line can be invalidated either by a cache instruction or an external invalidation request. If you rely on
cache locking, you need to take control.

Perhaps it’s worth saying here that cache locking is a feature which can be locally useful but globally pernicious;
think hard before using it in a large and complicated system.

7.4. CacheOps
20Kc implements a full set of cache operations13 including the (MIPS64-optional) ‘‘Fill_I’’.

20Kc also provides a pair of pairs of cache data registers IDataLo/IDataHi and DDataLo/DDataHi which return
the D-cache line data contents during a read-tags cache operation. For diagnostics only.

12 Note that the ‘‘Bonito’’ controller available on 20Kc ‘‘Malta’’ evaluation boards from MIPS
Technologies Inc does not take advantage of this optimisation, so the coherent and noncoherent
spaces behave identically in this case.

13 A bug in some revisions of 20Kc makes the ‘‘hit invalidate’’ cacheop unreliable. The
(fairly painless) workaround is to always prefer ‘‘hit writeback and invalidate’’.
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8. TLB and translation
20Kc has a conventional MIPS64 TLB with 48 paired entries.

• Care with duplicated entries during initialisation : Software should be careful about initialising the TLB,
though. In the fully-associative TLB it makes no sense to have two entries which could match the same virtual
address; in some logic implementations an attempt to translate the same address through two entries could even
damage the hardware.

While all known MIPS-architecture CPUs provide some defence against such a translation, the 20Kc does
something more; it takes a ‘‘machine check’’ exception if you try to set up such a dual translation.

This exception is taken even when the translations both lead to entries flagged as ‘‘invalid’’, and even when the
virtual address used in the entry is itself ‘‘untranslateable’’ - ie in KSEG0 or some other fixed-mapping region.

While it’s fairly straightforward for an initialisation routine to fit around these requirements, it can be
problematic when an OS is initialising a TLB which has already been initialised by a boot ROM; unless the
ROM and the OS use identical algorithms, you’re quite likely to hit on the same addresses but in different slots.

The solution is that as you form each address for your ‘‘invalid’’ TLB entries, you should first check that this
address doesn’t match any existing entry (using a tlbp instruction). If it does, you should advance the address
to the next invalid page address in your sequence, and try again until the probe shows no match.

• Pa g e sizes : PageMask has encodings to support all MIPS64 page sizes from 4Kbytes to 16Mbytes (in ×4
intervals).

• Non-standard cacheability attributes : EntryLo0/EntryLo1 registers have an extended ‘‘cacheability’’ code as
described in Table 7.1 above.

• How does Random count?

Counts down continually from the maximum value (47), wrapping back to 47 when it is found equal to the
Wired register (it’s also set back to 47 if Wired is ever written).

But there’s an extra trick: the hardware remembers the index of the last TLB entry used for translation, and
avoids using that index in the write-random tlbwr instruction (it decrements the Random pointer twice in that
case). This provides some last-ditch defence against unlucky sequences which create ‘‘beats’’ and cause a flood
of TLB misses.

9. Floating point (CP1)
20Kc provides a standard MIPS64 FPA, but also provides the MIPS 3D ASE, described in [MIPS3D]. This includes
‘‘paired-single’’ operations (SIMD instructions which process both of a pair of single-precision values held in one
64-bit register).

It seems to have just one unexpected feature:

Unimplemented exception used in integer/float conversions
20Kc’s hardware will only convert a limited range of values between integer and floating point - a limitation which
is commonplace in MIPS architecture CPUs. Conversion of a quantity outside these ranges will result in an
‘‘unimplemented’’ exception and must be handled by software.

However, 20Kc’s limits are somewhat more restrictive than some other 64-bit MIPS floating point units, so an
application new to 20Kc may experience more ‘‘unimplemented’’ exceptions in these cases

• Single-precision floating point : the hardware performs only conversions where the input value N is in the range:

-223 ≤ N < 223

The FP format can in fact represent larger values precisely (to 224); but the conversion algorithm uses up a bit.

Many other 64-bit MIPS architecture FPAs will convert any value in the range of a 32-bit signed integer.
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• Double-precision floating point : the hardware will perform those conversions14 where the integer value N
satisfies:

-251 ≤ N ≤ 251-1

This limit is typical for conversions from integer to floating point, but some other 64-bit MIPS architecture FPAs
will cope with larger numbers when converting from double-precision floating point to integer.

It may be clearer to set these out in a table.

Integer → float: cvt.[ds].[wl]

Most negative Most Positive
Input Output Input Output

Conv

cvt.s.w
-223

FF80.0000

223-1

007F.FFFF

cvt.s.l
-223

FFFF.FFFF.FF80.0000

- E=128+22

M=0

CB00.0000
223-1

0000.0000.007F.FFFF

+ E=128+21

M=7F.FFFE

4AFF.FFFE

cvt.d.w no limit, all 32-bit values can be converted to double

cvt.d.l
-251

FFF8.0000.0000.0000

- E=1024+50

M=0

C320.0000.0000.0000

251-1

0007.FFFF.FFFF.FFFF

+ E=1024+49

M=F.FFFF.FFFF.FFFC

431F.FFFF.FFFF.FFFC

Float → integer: cvt.[wl].[ds], round, ceil, floor, trunc.

Most negative Most Positive
Input Output Input Output

Conv

cvt.w.s
cvt.l.s

- E=128+21

M=7F.FFFF

CAFF.FFFF

-223+0.5†

FF80.0000

+ E=128+21

M=7F.FFFF

4AFF.FFFF

223-0.5†

007F.FFFF

cvt.w.d

- E=1024+28

M=F.FFFF.FFFF.FFFF

C1CF.FFFF.FFFF.FFFF

-230-e‡

C000.0000

+ E=1024+28

M=F.FFFF.FFFF.FFFF

41CF.FFFF.FFFF.FFFF

230-e‡

4000.0000

cvt.l.d

- E=1024+50

M=F.FFFF.FFFF.FFFF

C32F.FFFF.FFFF.FFFF

-252+0.5†

FFF0.0000.0000.0001

+ E=1024+50

M=F.FFFF.FFFF.FFFF

432F.FFFF.FFFF.FFFF

252-0.5†

000F.FFFF.FFFF.FFFF

Table 9.1: Limits of hardware conversion between integer and floating point

Notes on Table 9.1

• Instruction conventions : remember that cvt.s.w should be read as ‘‘convert from word to single’’, that the
integer formats are w (‘‘word’’) and l (‘‘long’’), the floating point formats are s (‘‘single’’) and d (‘‘double’’).

• Data representation : each full value (and mantissa field values) are shown in hexadecimal. For floating point
values we also show the sign field (‘‘+’’ or ‘‘-’’); the exponent value ‘‘E=xx’’, shown as x + y, where x is the
mathematical exponent value and y is the ‘‘bias’’; and the mantissa ‘‘M=xx’’. [SEEMIPSRUN] describes the
IEEE754 floating point formats.

• † : extreme floating-point values are not necessarily exact integers, so the result depends on the rounding rule.
The integer values shown are the result of rounding to the nearest integer, with round-to-zero as a tie-breaker for
values which are exactly xx.5.

• ‡ : e represents a tiny quantity, one least-significant bit of double-precision format.

14 Well, apparently it’s not so simple; Table 9.1 aims to be precise. Apparently FP
double→64-bit integer conversions work for any exactly-representable quantity, but FP
double→32-bit conversions are limited by a bit...

Don’t assume this is exactly right in this version.
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10. Debug and visibility facilities
The 20Kc provides EJTAG debug, compliant with v2.6. You can set up to four instruction breakpoints and two data
‘‘breakpoints’’ (more often called ‘‘watchpoints’’). See [EJTAG].

There is a single watchpoint register provided outside of the EJTAG unit for compatibility with non-EJTAG CPUs,
and a single performance counter register.

10.1. Watchpoint
There’s a single 64-bit watchpoint register usable for instruction and data, controlled through the WatchLo/WatchHi
register pair, as shown in Figure 10.1. Software can tell there is only one watchpoint; the presence of further
registers would be indicated by a 1 in WatchHi[31].

63 3 2 1 0

WatchLo VAddr (doubleword resolution) I R W

31 30 29 24 23 16 15 12 11 3 2 0

WatchHi 0 G  0 ASID 0 MASK 0

Figure 10.1 Fields in the watchpoint registers WatchLo/WatchHi

About Watchpoint register fields

• VAddr : a 64-bit virtual address. Since it ends at bit 3 it only has a doubleword (8 byte) resolution, and will
match on any access within the doubleword. But see WatchHi.MASK below for how you can coarsen the match
further.

• I, R, W : trigger on any of Instruction access, data Read (load) or Write (store). Any combination is permitted;
you can disable the watchpoint function by writing zero to all.

[MIPS64v3] requires these to be set zero on reset to make sure you can’t get unwanted watchpoint registers
before software can initialise WatchHi. But in 20Kc they are not so cleared. In theory this could cause an
infinite loop, if you were unlucky enough to power up with a watchpoint matching an instruction in the very
early post-reset initialisation code; in practice this is vanishingly improbable, but it is important to clear these
bits out as early as possible after the CPU starts up.

• G, ASID : address-space ID and control. For user addresses you’ll usually set WatchHi.ASID so only addresses
from the address space of the task under debug match. If the WatchHi.G (global) bit is set, WatchHi.ASID is
ignored and only the virtual address is matched. If you set the address to one of the ‘‘unmapped’’ regions, you
certainly want to set WatchHi.G.

• MASK : allows you to coarsen the resolution of the watchpoint to catch more addresses (up to a 4096 byte
region). Each bit set in MASK eliminates the corresponding bit of the virtual address from comparision.
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10.2. Performance counter
There is a single 32-bit performance counter with its control word. The 20Kc’s performance counters are orientated
more to the need of the implementors than the software developer: consult the list of events below.

The performance counter supplies an interrupt, active if the high-order bit of the counter is set. The control register
bits are shown in Figure 10.2.

31 11 10 5 4 3 2 1 0

0 Event IE U S K EXL

Figure 10.2 Performance counter control register fields

Where:

• 0 : reads zero, please write as zero. The MIPS64 specification requires bit 31 to be clear to indicate there are no
further performance counters.

• Event : event code currently being counted. Supported values:

Value What is counted

0x00 CPU cycles
0x01 dispatched/issued instructions
0x02 fetch groups entering CPU execution pipes (a fetch group is

an aligned group of up to four instructions)
0x03 computational FP instructions executed (doesn’t count

branches, loads, or mtc1/mfc1 moves).
0x04 TLB refill exceptions
0x05 branch mispredictions
0x06 all branches
0x07 taken Joint-TLB exceptions
0x08 Where an instruction consuming load data is issued in the

clock cycle immediately after its load, and the load misses in
the primary cache, 20Kc uses a replay (whose overhead is
usually lost in the cache refill time). This counts those events.

0x09 instruction requests from the IFU to the BIU
0x0A FPU exceptions taken
0x0B counts the total number of replays due to any of (a) requests

from the load/store unit (b) load/use replays (as in 0x08
above) or (c) FPU exception prediction

0x0C jr ra (return) instructions that mispredicted using the return
prediction stack.

0x0D all JR instructions executed
0x0E load/store unit requested replays
0x0F instruction that completed execution (with or without

exception)

• IE : set 1 to enable interrupt.

• U, S, K : set 1 to enable counting in any of user, supervisor or kernel mode as required.

• EXL : set 1 to enable counting when in an exception handler, too (ie when SR.EXL is set but SR.ERL is not).
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11. Software-managed hazards
[This section currently reproduces the 20Kc manual section]

11.1. CP0 Hazards
Because resources controlled via Coprocessor 0 affect the operation of various pipeline stages of a MIPS64
processor, manipulation of these resources may produce results that are not detectable by subsequent instructions for
some number of execution cycles. When no hardware interlock exists between one instruction that causes an effect
that is visible to a second instruction, a CP0 hazard exists.

The 20Kc processor implements hardware interlocks to resolve many CP0 instruction hazards: Table 11.1 shows
those hazards which are not handled by the interlocks. The hazard is resolved by either a delay of a number of
dispatch cycles (number of ssnops required) or by the execution of some ‘‘barrier’’ instruction.

Changes to EntryHi.ASID and Status are not guaranteed to affect the instruction fetches until an eret
instruction is executed.

Producer Consumer Hazard On until

→ +4 cyclesLL MFC0 LLAddr

deferred watch exception → +2 cyclesMFC0 Cause.WP

→ instruction fetchesEntryHi.ASID EntryHi.ASID eret

→ instruction fetchesStatus Status eret

Watch register write → instruction taking exception Watch eret

→ instruction fetches TLBtlbw eret

→ instruction not seeing timer interrupt Timer interrupt +4 cyclesCompare

→ instruction fetches Instruction cachecache eret

Table 11.1: CP0 Hazards and required action
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12. References
MIPS64 The ‘‘MIPS64 Architecture Reference Manual’’. This comes in three volumes. A fourth volume

is required to define release 2 of the architecture:

Vol Subtitle Document No Rev
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volume 2 The MIPS64 Instruction Set MD00085 1.00
volume 3 The MIPS64 Privileged Resource Architecture MD00089 1.00

Release 2 Architecture Changes MD00145 1.50

The references [MIPS64V2] and [MIPS64V3] are to volume 2 and volume 3.

EJTAG MIPS Technologies’ ‘‘EJTAG Specification’’, document number MD00047, v2.61.

SEEMIPSRUN ‘‘See MIPS Run’’, Dominic Sweetman, published by Morgan Kaufmann, ISBN 1−55860−410−3.
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Appendix A: CP0 registers by name and number

Register Register See ref/
No./Set Name section

Function

0.0 Index Index into the TLB array

1.0 Random Randomly generated index into the TLB array

2.0 EntryLo0 Low-order portion of the TLB entry for even-numbered virtual
pages

3.0 EntryLo1 Low-order portion of the TLB entry for odd-numbered virtual pages

4.0 Context

[MIPS64]

Pointer to page table entry in memory

5.0 PageMask §8, p.16Control for variable page size in TLB entries

6.0 Wired Controls the number of fixed ("wired") TLB entries

8.0 BadVAddr
[MIPS64]

Reports the address for the most recent address-related exception

9.0 Count Processor cycle count §6.1, p.10

10.0 EntryHi High-order portion of the TLB entry

11.0 Compare Timer interrupt control
[MIPS64]

12.0 Status Processor status and control §6.2, p.10

13.0 Cause Cause of last general exception

14.0 EPC
[MIPS64]

Program counter at last exception

15.0 PRId Figure 3.1, p.7Processor identification and revision

16.0 Config Configuration register Table 3.1, p.6
16.1 Config1 Configuration register 1

17.0 LLAddr Load linked address
[MIPS64]

18.0 WatchLo Watchpoint address

19.0 WatchHi Watchpoint control
Figure 10.1, p.18

20.0 XContext [MIPS64]Extended Addressing Page Table Context

23.0 Debug EJTAG Debug register

24.0 DEPC
[EJTAG]

Program counter at last EJTAG debug exception

25.0 PerfCtl Performance counter control Figure 10.2, p.19
25.1 PerfCnt Performance counter §10.2, p.19

26.0 DErrCtl
26.1 IErrCtl

§5.2, p.9Parity/ECC error control and status

27.0 CacheErr Cache parity error control and status

28.0 ITagLo Figure 7.1, p.11
28.2 DTagLo Figure 7.2, p.14

Low-order portion of cache tag interface

28.1 IDataLo DIAG
28.3 DDataLo

Low-order portion of cache data interface

29.0 ITagHi Figure 7.1, p.11High-order portion of cache tag interface
29.1 IDataHi DIAG
29.3 DDataHi

High-order portion of cache data interface

30.0 ErrorEPC Program counter at last error [MIPS64]

31.0 DESAVE [EJTAG]EJTAG debug exception save register
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By name

Register Register Register Register
Name Name Name Name

Number Number Number Number

BadVAddr 8.0 DEPC 24.0 IDataHi 29.1 PerfCtl 25.0
CacheErr 27.0 DESAVE 31.0 IDataLo 28.1 Random 1.0
Cause 13.0 DErrCtl 26.0 IErrCtl 26.1 Status 12.0
Compare 11.0 DTagLo 28.2 ITagHi 29.0 WatchHi 19.0
Config1 16.1 Debug 23.0 ITagLo 28.0 WatchLo 18.0
Config 16.0 EPC 14.0 Index 0.0 Wired 6.0
Context 4.0 EntryHi 10.0 LLAddr 17.0 XContext 20.0
Count 9.0 EntryLo0 2.0 PRId 15.0
DDataHi 29.3 EntryLo1 3.0 PageMask 5.0
DDataLo 28.3 ErrorEPC 30.0 PerfCnt 25.1

By Function

Basic status Status 12.0

BadVAddr 8.0
EPC 14.0
Cause 13.0

Exception control

CacheErr 27.0
DErrCtl 26.0
IErrCtl 26.1
ErrorEPC 30.0

Parity/ECC control

Compare 11.0
Count 9.0

Timer

PRId 15.0
Config 16.0
Config1 16.1

Configuration

Context 4.0
XContext 20.0

EntryHi 10.0
EntryLo0 2.0
EntryLo1 3.0
PageMask 5.0

Index 0.0
Random 1.0
Wired 6.0

TLB maintenance

ITagHi 29.0
ITagLo 28.0
DTagLo 28.2
IDataHi 29.1
IDataLo 28.1
DDataHi 29.3
DDataLo 28.3

Cache

Debug 23.0
DEPC 24.0
DESAVE 31.0

EJTAG

PerfCtl 25.0
PerfCnt 25.1

WatchHi 19.0
WatchLo 18.0

debug

Load-linked LLAddr 17.0
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